πŸ›οΈ

Netflix Architecture Case Study

System Architecture Intermediate 3 min read 400 words
Case Study System Design Microservices

Netflix Architecture Case Study

An in-depth look at Netflix’s highly scalable distributed system architecture that serves 200+ million subscribers worldwide.

Architecture Overview

Netflix operates one of the world’s largest and most sophisticated microservices architectures, processing billions of API requests daily.

                    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                    β”‚              CDN (Open Connect)              β”‚
                    β”‚         Content Delivery Appliances          β”‚
                    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                      β”‚
                    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                    β”‚            API Gateway (Zuul)                β”‚
                    β”‚        Load Balancing, Routing               β”‚
                    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                      β”‚
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚                                 β”‚                                 β”‚
    β–Ό                                 β–Ό                                 β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Playback  β”‚                   β”‚ Discovery β”‚                   β”‚  Account  β”‚
β”‚ Service   β”‚                   β”‚  Service  β”‚                   β”‚  Service  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Key Components

1. Open Connect CDN

  • Purpose: Deliver video content efficiently
  • Implementation: Custom CDN with appliances in ISP networks
  • Scale: Handles 15% of global internet traffic
  • Features:
    • Content pre-positioned close to users
    • Intelligent content routing
    • Real-time traffic optimization

2. API Gateway (Zuul)

  • Function: Entry point for all client requests
  • Responsibilities:
    • Request routing
    • Load balancing
    • Authentication
    • Rate limiting
    • Dynamic filtering
  • Open Source: Netflix OSS contribution

3. Service Discovery (Eureka)

@EnableEurekaClient
@SpringBootApplication
public class MyServiceApplication {
    // Service registers with Eureka
}
  • Services register themselves
  • Clients discover services dynamically
  • Health monitoring
  • Automatic failover

4. Circuit Breaker (Hystrix)

// Conceptual C# equivalent using Polly
var policy = Policy
    .Handle<HttpRequestException>()
    .CircuitBreakerAsync(
        exceptionsAllowedBeforeBreaking: 5,
        durationOfBreak: TimeSpan.FromSeconds(30)
    );
  • Prevents cascade failures
  • Fast failure response
  • Fallback mechanisms
  • Real-time monitoring

5. Client-Side Load Balancing (Ribbon)

  • Distributes load across service instances
  • Multiple algorithms (round-robin, weighted, zone-aware)
  • Integrated with service discovery

Data Architecture

Primary Data Stores

Store Purpose Technology
Member Data User profiles, preferences Cassandra
Viewing History Watch activity Cassandra
Content Metadata Titles, descriptions EVCache + Cassandra
Billing Subscriptions, payments MySQL
Analytics Viewing patterns Kafka + Spark

Caching Strategy

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   Client    │────▢│   EVCache   │────▢│  Cassandra  β”‚
β”‚   Request   β”‚     β”‚   (Cache)   β”‚     β”‚  (Source)   β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
  • EVCache: Distributed caching layer
  • Multi-tier caching
  • Cache warming strategies

Resilience Patterns

Chaos Engineering (Chaos Monkey)

Netflix pioneered chaos engineering to test system resilience:

  1. Chaos Monkey: Randomly terminates instances
  2. Latency Monkey: Introduces artificial delays
  3. Conformity Monkey: Finds non-conforming instances
  4. Janitor Monkey: Cleans up unused resources
  5. Chaos Kong: Simulates entire region failures

Bulkhead Pattern

Isolate components to prevent cascade failures:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚           Application                 β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Pool A   β”‚  Pool B  β”‚    Pool C     β”‚
β”‚ (Auth)   β”‚ (Search) β”‚  (Recommend)  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Recommendation Engine

Architecture

  • Input: Viewing history, ratings, browsing behavior
  • Processing: ML models on Spark clusters
  • Output: Personalized content rankings

Data Pipeline

User Actions β†’ Kafka β†’ Spark Streaming β†’ ML Models β†’ Recommendations
                 β”‚
                 └──→ Batch Processing β†’ Model Training

Deployment & Operations

Continuous Deployment

  • Spinnaker: Multi-cloud deployment platform
  • Red/Black deployments
  • Canary releases
  • Automated rollbacks

Monitoring Stack

  • Atlas: Time-series metrics
  • Mantis: Real-time stream processing
  • Vector: On-host performance monitoring

Key Lessons

1. Design for Failure

  • Assume everything will fail
  • Build redundancy at every level
  • Test failure scenarios regularly

2. Embrace Microservices

  • Small, focused services
  • Independent deployment
  • Clear API contracts

3. Automate Everything

  • Deployment
  • Scaling
  • Recovery

4. Use Caching Aggressively

  • Multiple cache layers
  • Intelligent cache invalidation
  • Edge caching for content

5. Invest in Observability

  • Comprehensive metrics
  • Distributed tracing
  • Real-time alerting

Technologies Used

Category Technology
API Gateway Zuul
Service Discovery Eureka
Circuit Breaker Hystrix
Load Balancer Ribbon
Caching EVCache
Database Cassandra, MySQL
Streaming Kafka
Processing Spark
Deployment Spinnaker
Monitoring Atlas

Sources

  • Arhitectura/Netflix architecture.gif

πŸ“š Related Articles